If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x-34=0
a = 4; b = -20; c = -34;
Δ = b2-4ac
Δ = -202-4·4·(-34)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{59}}{2*4}=\frac{20-4\sqrt{59}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{59}}{2*4}=\frac{20+4\sqrt{59}}{8} $
| 2v-9=v | | 4=7x=8x-2x | | X+5/16=9/8+x-6/3 | | 368/0.304=b | | 2-2n-2n=-5-5-3n | | 3x-38=x+4 | | C+7c-3c-2c=39 | | 0=4-n | | 25=7=+3k-12 | | 5t+16=6−5tt= | | 3(2x-4)=4x+14 | | 5/9m−1/9=9/54 | | 2x+5x+3x4x+6=7(2x+3) | | 59m−19=954 | | -9w-1=44 | | 2p=64 | | 1x^2-26+48=0 | | 3(x+5(7-x)+27-11=94-15x | | X^2-7x-18=x | | x+.02x=28270.11 | | 4(3x-4)+6(3x-4)=80 | | 8i+6=3i+21 | | 32×=k | | 1+4x=5=7x | | 225-35x=48^x | | -4=(p-2) | | 3(v+4)=-30 | | 9y-45=6(y-9) | | 7(u-3)-3u=-25 | | 88=7n^2+45n | | d=5-16+-1-15 | | 88=7n6 |